Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.650
Filtrar
1.
Mikrochim Acta ; 191(5): 237, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570419

RESUMO

An ultra-sensitive fluorescent biosensor based on CDs/QDs@ZIF-8 and microfluidic fluidized bed was developed for rapid and ultra-sensitive detection of multiple target bacteria. The zeolitic imidazolate frameworks (ZIF-8) act as the carrier to encapsulate three kinds of fluorescence signal molecules from the CDs/QDs@ZIF-8 signal amplification system. Besides, three kinds of target pathogenic bacteria were automatically, continuously, and circularly captured by the magnetic nanoparticles (MNPs) in the microfluidic fluidized bed. The neutral Na2EDTA solution was the first time reported to not only dissolve the ZIF-8 frameworks from the MNPs-bacteria-CDs/QDs@ZIF-8 sandwich complexes, but also release the CDs/QDs from sandwich complexes with no loss of fluorescence signal. Due to the advantages of signal amplification and automated sample pretreatment, the proposed fluorescent biosensor can simultaneously detect Escherichia coli O157:H7, Salmonella paratyphi A, and Salmonella paratyphi B as low as 101 CFU/mL within 1.5 h, respectively. The mean recovery in spiked milk samples can reach 99.18%, verifying the applicability of this biosensor in detecting multiple bacteria in real samples.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Pontos Quânticos , Zeolitas , Microfluídica , Corantes
2.
Nat Commun ; 15(1): 2980, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582774

RESUMO

TDP-43 is implicated in the dynamic formation of nuclear bodies and stress granules through phase separation. In diseased states, it can further condense into pathological aggregates in the nucleus and cytoplasm, contributing to the onset of amyotrophic lateral sclerosis. In this study, we evaluate the effect of graphene quantum dots (GQDs) with different functional groups on TDP-43's phase separation and aggregation in various cellular locations. We find that halogen atom-doped GQDs (GQDs-Cl, Cl-GQDs-OH) penetrate the nuclear envelope, inhibiting the assembly of TDP-43 nuclear bodies and stress granules under oxidative stress or hyperosmotic environments, and reduce amyloid aggregates and disease-associated phosphorylation of TDP-43. Mechanistic analysis reveals GQDs-Cl and Cl-GQDs-OH modulate TDP-43 phase separation through hydrophobic and electrostatic interactions. Our findings highlight the potential of GQDs-Cl and Cl-GQDs-OH in modulating nuclear protein condensation and pathological aggregation, offering direction for the innovative design of GQDs to modulate protein phase separation and aggregation.


Assuntos
Esclerose Amiotrófica Lateral , Grafite , Pontos Quânticos , Humanos , 60422 , Esclerose Amiotrófica Lateral/metabolismo , Proteínas de Ligação a DNA/metabolismo
3.
Anal Chem ; 96(14): 5446-5454, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38556805

RESUMO

In this study, a novel integrated photoelectrochemical (PEC) sensor platform was proposed, utilizing an optical fiber (OF) as the working electrode for guided in situ light. A CdS quantum dots (QDs)/ZnO nanosheets (NSs) n-n heterojunction was quickly and easily constructed on the OF surface by successive ionic layer adsorption and reaction (SILAR). Au nanoparticles (NPs)@dsDNA as a capturing probe were modified on the CdS QDs/ZnO NSs@OF (CZ@OF). Due to the energy transfer between Au NPs@dsDNA and CdS QDs, the resultant opto-electrode has a lower background near zero, enabling the "signal-on" detection of biomarkers (interleukin-6 (IL-6) as a model). The OF-PEC biosensor demonstrated a wide linear range from 1 to 100 pg mL-1 with a regression coefficient (R2) of 0.9958 and an impressive detection limit (LOD) of 0.19 pg mL-1. More significantly, the proposed OF-PEC can be successfully used for the detection of IL-6 in serum samples from patients with pulmonary arterial hypertension, and it showed consistency and is more sensitive to trace concentrations compared to BD FACSCanto II flow cytometry used at the hospital. This holds significance for an early disease diagnosis. Therefore, the proposed OF-PEC not only achieves integration of the light source and sensing interface but also enables sensitive and accurate "signal-on" detection of IL-6. Furthermore, due to the flexibility and remote detection capabilities of OF, the application of OF-PEC is expected to be expanded more widely. This approach opens up possibilities for advances in PEC sensing.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Pontos Quânticos , Óxido de Zinco , Humanos , Técnicas Eletroquímicas , Citocinas , Interleucina-6 , Ouro , Adsorção , Fibras Ópticas , Eletrodos , Limite de Detecção
4.
Mikrochim Acta ; 191(5): 249, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587558

RESUMO

17ß-Estradiol (E2) is the typical endocrine disruptor of steroidal estrogens and is widely used in animal husbandry and dairy processing. In the environment, even lower concentrations of E2 can cause endocrine dysfunction in organisms. Herein, we have developed a novel molecularly imprinted ratiometric fluorescent sensor based on SiO2-coated CdTe quantum dots (CdTe@SiO2) and 7-hydroxycoumarin with a post-imprint mixing strategy. The sensor selectively detected E2 in aqueous environments due to its two fluorescent signals with a self-correction function. The sensor has been successfully used for spiking a wide range of real water and milk samples. The results showed that the sensor exhibited good linearity over the concentration range 0.011-50 µg/L, obtaining satisfactory recoveries of 92.4-110.6% with precisions (RSD) < 2.5%. Moreover, this sensor obtained an ultra-low detection limit of 3.3 ng/L and a higher imprinting factor of 13.66. By using estriol (E3), as a supporting model, it was confirmed that a simple and economical ratiometric fluorescent construction strategy was provided for other hydrophobic substances.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Animais , Leite , Fluorescência , Dióxido de Silício , Telúrio , Estradiol , Corantes
5.
Mikrochim Acta ; 191(5): 255, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594377

RESUMO

Perovskite quantum dots (PQDs) are novel nanomaterials wherein perovskites are used to formulate quantum dots (QDs). The present study utilizes the excellent fluorescence quantum yields of these nanomaterials to detect 16S rRNA of circulating microbiome for risk assessment of cardiovascular diseases (CVDs). A long short-term memory (LSTM) deep learning model was used to find the association of the circulating bacterial species with CVD risk, which showed the abundance of three different bacterial species (Bauldia litoralis (BL), Hymenobacter properus (HYM), and Virgisporangium myanmarense (VIG)). The observations suggested that the developed nano-sensor provides high sensitivity, selectivity, and applicability. The observed sensitivities for Bauldia litoralis, Hymenobacter properus, and Virgisporangium myanmarense were 0.606, 0.300, and 0.281 fg, respectively. The developed sensor eliminates the need for labelling, amplification, quantification, and biochemical assessments, which are more labour-intensive, time-consuming, and less reliable. Due to the rapid detection time, user-friendly nature, and stability, the proposed method has a significant advantage in facilitating point-of-care testing of CVDs in the future. This may also facilitate easy integration of the approach into various healthcare settings, making it accessible and valuable for resource-constrained environments.


Assuntos
Alphaproteobacteria , Compostos de Cálcio , Doenças Cardiovasculares , Aprendizado Profundo , Micromonosporaceae , Óxidos , Pontos Quânticos , Titânio , Humanos , RNA Ribossômico 16S/genética , Doenças Cardiovasculares/diagnóstico
6.
Mikrochim Acta ; 191(5): 263, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619658

RESUMO

A green and sensitive ratio fluorescence strategy was proposed for the detection of formaldehyde (FA) in food based on a kind of metal-organic frameworks (MOFs), MIL-53(Fe)-NO2, and nitrogen-doped Ti3C2 MXene quantum dots (N-Ti3C2 MQDs) with a blue fluorescence at 450 nm. As a type of MOFs with oxidase-like activity, MIL-53(Fe)-NO2 can catalyze o-phenylenediamine (OPD) into yellow fluorescent product 2,3-diaminophenazine (DAP) with a fluorescent emission at 560 nm. DAP has the ability to suppress the blue light of N-Ti3C2 MQDs due to inner filter effect (IFE). Nevertheless, Schiff base reaction can occur between FA and OPD, inhibiting DAP production. This results in a weakening of the IFE which reverses the original fluorescence color and intensity of DAP and N-Ti3C2 MQDs. So, the ratio of fluorescence intensity detected at respective 450 nm and 560 nm was designed as the readout signal to detect FA in food. The linear range of FA detection was 1-200 µM, with a limit of detection of 0.49 µM. The method developed was successfully used to detect FA in food with satisfactory results. It indicates that MIL-53(Fe)-NO2, OPD, and N-Ti3C2 MQDs (MON) system constructed by integrating the mimics enzyme, enzyme substrate, and fluorescent quantum dots has potential application for FA detection in practical samples.


Assuntos
Estruturas Metalorgânicas , Fenilenodiaminas , Pontos Quânticos , Corantes Fluorescentes , Dióxido de Nitrogênio , Formaldeído
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124221, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569390

RESUMO

The toxicological effect between co-existed antibiotics and metal ions was dangerous to the ecological environment and public health. However, the rapid quantification tools with convenience, accuracy and low cost for the detection of multiple targets were still challenging. Herein, a portable tri-color ratiometric fluorescence paper sensor was constructed by coupling of blue carbon dots and fluorescence imprinted polymer for down/up conversion simultaneous detection of tetracycline and sulfamethazine. Interestingly, the cascade detection of aluminum ion was also realized based on the individual detection system of tetracycline without the assistance of complex coupling reagents. The detection limits of smartphone method for the visual detection of tetracycline, sulfamethazine and aluminum ion were calculated as 0.014 µM, 0.004 µM and 0.019 µM, respectively. The portable fluorescence paper sensor was applied for the visual detection of tetracycline, sulfamethazine and aluminum ion in actual samples successfully with satisfactory recoveries. With the advantages of rapidness, low cost, and portability, the developed portable fluorescence paper sensor provided a new strategy for the visual real-time detection of multiple targets.


Assuntos
Antibacterianos , Pontos Quânticos , Alumínio , Sulfametazina , Fluorescência , Tetraciclina , Carbono , Íons , Corantes Fluorescentes , Espectrometria de Fluorescência , Limite de Detecção
8.
Commun Biol ; 7(1): 393, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561432

RESUMO

Multimodal nanoparticles, utilizing quantum dots (QDs), mesoporous silica nanoparticles (MSNs), and gold nanoparticles (Au NPs), offer substantial potential as a smart and targeted drug delivery system for simultaneous cancer therapy and imaging. This method entails coating magnetic GZCIS/ZnS QDs with mesoporous silica, loading epirubicin into the pores, capping with Au NPs, PEGylation, and conjugating with epithelial cell adhesion molecule (EpCAM) aptamers to actively target colorectal cancer (CRC) cells. This study showcases the hybrid QD@MSN-EPI-Au-PEG-Apt nanocarriers (size ~65 nm) with comprehensive characterizations post-synthesis. In vitro studies demonstrate the selective cytotoxicity of these targeted nanocarriers towards HT-29 cells compared to CHO cells, leading to a significant reduction in HT-29 cell survival when combined with irradiation. Targeted delivery of nanocarriers in vivo is validated by enhanced anti-tumor effects with reduced side effects following chemo-radiotherapy, along with imaging in a CRC mouse model. This approach holds promise for improved CRC theranostics.


Assuntos
Neoplasias Colorretais , Nanopartículas Metálicas , Pontos Quânticos , Camundongos , Animais , Cricetinae , Ouro , Medicina de Precisão , Dióxido de Silício , Cricetulus , Neoplasias Colorretais/patologia , Quimiorradioterapia
9.
Appl Microbiol Biotechnol ; 108(1): 283, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573435

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). Current vaccine prevention and treatment approaches for PRRS are not adequate, and commercial vaccines do not provide sufficient cross-immune protection. Therefore, establishing a precise, sensitive, simple, and rapid serological diagnostic approach for detecting PRRSV antibodies is crucial. The present study used quantum dot fluorescent microspheres (QDFM) as tracers, covalently linked to the PRRSV N protein, to develop an immunochromatography strip (ICS) for detecting PRRSV antibodies. Monoclonal antibodies against PRRSV nucleocapsid (N) and membrane (M) proteins were both coated on nitrocellulose membranes as control (C) and test (T) lines, respectively. QDFM ICS identified PRRSV antibodies under 10 min with high sensitivity and specificity. The specificity assay revealed no cross-reactivity with the other tested viruses. The sensitivity assay revealed that the minimum detection limit was 1.2 ng/mL when the maximum dilution was 1:2,048, comparable to the sensitivity of enzyme-linked immunosorbent assay (ELISA) kits. Moreover, compared to PRRSV ELISA antibody detection kits, the sensitivity, specificity, and accuracy of QDFM ICS after analyzing 189 clinical samples were 96.7%, 97.9%, and 97.4%, respectively. Notably, the test strips can be stored for up to 6 months at 4 °C and up to 4 months at room temperature (18-25 °C). In conclusion, QDFM ICS offers the advantages of rapid detection time, high specificity and sensitivity, and affordability, indicating its potential for on-site PRRS screening. KEY POINTS: • QDFM ICS is a novel method for on-site and in-lab detection of PRRSV antibodies • Its sensitivity, specificity, and accuracy are on par with commercial ELISA kits • QDFM ICS rapidly identifies PRRSV, aiding the swine industry address the evolving virus.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Pontos Quânticos , Animais , Suínos , Microesferas , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Corantes , Anticorpos Antivirais , Cromatografia de Afinidade
10.
Mikrochim Acta ; 191(4): 227, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558113

RESUMO

Chitosan, an abundant natural polysaccharide, was conjugated with carbon dots (CDs) and self-polymerized with chloramphenicol (CAP) templates to synthesize CD-incorporated and molecularly CAP-imprinted polychitosan (CD-MIC). The CD-MIC was used for fluorescent sensing, dispersive sorption, and dosage release of CAP at different pH levels. The sphere of action mechanism, approved by emission and excitation fluorescence, UV-Vis absorption, and fluorescence lifetime measurements, regulated the fluorescence static quenching. By the Perrin model, the quenching extent was linearly correlated to CAP within 0.17 - 33.2 µM (LOD = 37 nM) at pH 7.0. With an imprinting factor of 3.1, the CD-MIC was more selective for CAP than CD, although it was less sensitive to CAP. The recoveries of 5.0 µM CAP from milk matrix were 95% (RSD = 2.3%) for CD-MIC probes and 62% (RSD = 4.5%) for CD. The Langmuir and pseudo-second-order models preferably described the isothermal and kinetic sorptions of CAP into the imprinted cavities in CD-MICs, respectively. The Weber - Morris kinetic model showed three stages involved in intraparticle diffusion, which was pH-dependent and gradually arduous at the later stage, and showed external diffusion partly engaged in the diffusion mechanism. The 20 - 70% of CAP formulated in CAP-embedded CD-MICs were released in 8 - 48 h. The release percentage was lower at pH 7.0 than at pH 5.0 and 9.0, but the equilibrium time was shorter. At pH 7.0, the release percentage reached 45% at 10 min and slowly increased to 51% at 24 h.


Assuntos
Impressão Molecular , Pontos Quânticos , Carbono , Cloranfenicol , Portadores de Fármacos , Corantes
11.
Compr Rev Food Sci Food Saf ; 23(3): e13339, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38578165

RESUMO

The importance of food quality and safety lies in ensuring the best product quality to meet consumer demands and public health. Advanced technologies play a crucial role in minimizing the risk of foodborne illnesses, contamination, drug residue, and other potential hazards in food. Significant materials and technological advancements have been made throughout the food supply chain. Among them, quantum dots (QDs), as a class of advanced nanomaterials with unique physicochemical properties, are progressively demonstrating their value in the field of food quality and safety. This review aims to explore cutting-edge research on the different applications of QDs in food quality and safety, including encapsulation of bioactive compounds, detection of food analytes, food preservation and packaging, and intelligent food freshness indicators. Moreover, the modification strategies and potential toxicities of diverse QDs are outlined, which can affect performance and hinder applications in the food industry. The findings suggested that QDs are mainly used in analyte detection and active/intelligent food packaging. Various food analytes can be detected using QD-based sensors, including heavy metal ions, pesticides, antibiotics, microorganisms, additives, and functional components. Moreover, QD incorporation aided in improving the antibacterial and antioxidant activities of film/coatings, resulting in extended shelf life for packaged food. Finally, the perspectives and critical challenges for the productivity, toxicity, and practical application of QDs are also summarized. By consolidating these essential aspects into this review, the way for developing high-performance QD-based nanomaterials is presented for researchers and food technologists to better capitalize upon this technology in food applications.


Assuntos
Pontos Quânticos , Pontos Quânticos/toxicidade , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Qualidade dos Alimentos , Embalagem de Alimentos/métodos
12.
Mikrochim Acta ; 191(5): 284, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652331

RESUMO

A dual-mode (colorimetric/fluorescence) nanoenzyme-linked immunosorbent assay (NLISA) was developed based on Au-Cu nanocubes generating Prussian blue nanoparticles (PBNPs). It is expected that this method can be used to detect the residues of sulfonamides in the field, and solve the problem of long analysis time and high cost of the traditional method. Sulfadimethoxine (SDM) was selected as the proof-of-concept target analyte. The Au-Cu nanocubes were linked to the aptamer by amide interaction, and the Au-Cu nanocubes, SDM and antibody were immobilized on a 96-well plate using the sandwich method. The assay generates PBNPs by oxidising the Cu shells on the Au-Cu nanocubes in the presence of hydrochloric acid, Fe3+ and K3[Fe (CN)6]. In this process, the copper shell undergoes oxidation to Cu2+ and subsequently Cu2 + further quenches the fluorescence of the carbon point. PBNPs exhibit peroxidase-like activity, oxidising 3,3',5,5'-tetramethylbenzidine (TMB) to OX-TMB in the presence of H2O2, which alters the colorimetric signal. The dual-mode signals are directly proportional to the sulfadimethoxine concentration within the range 10- 3~10- 7 mg/mL. The limit of detection (LOD) of the assay is 0.023 ng/mL and 0.071 ng/mL for the fluorescent signal and the colorimetric signal, respectively. Moreover, the assay was successfully applied to determine sulfadimethoxine in silver carp, shrimp, and lamb samples with satisfactory results.


Assuntos
Carbono , Colorimetria , Cobre , Ferrocianetos , Sulfadimetoxina , Ferrocianetos/química , Sulfadimetoxina/análise , Sulfadimetoxina/química , Cobre/química , Colorimetria/métodos , Carbono/química , Limite de Detecção , Ouro/química , Pontos Quânticos/química , Fluorometria/métodos , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Nanopartículas/química , Animais , Ensaio de Imunoadsorção Enzimática/métodos
13.
J Hazard Mater ; 470: 134272, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613953

RESUMO

As a global emerging contaminant, microplastics (MPs) in water or soil can accumulate in vegetables, making them easily ingested through the diet. With excellent and tunable optical properties, carbon dots (CDs) are highly advantageous for tracing the entry process of MPs. Originally, long-wavelength CDs were synthesized from leaf-derived extracts, and fluorescent submicrometer plastics (CDs-MPs) with clean surfaces and concentrated particle sizes were obtained by soap-free microemulsion polymerization. The concentration of CDs-MPs exhibits a significant linear relationship with long-wavelength fluorescence intensity (λEx/λEm: 415/676 nm). Soybean sprouts (SBS), as an important type of food, are susceptible to contamination of MPs due to their soft epidermis and rapidly growing biomass. The results showed that CDs-MPs could be embedded into the cortex of SBS and enter the plant with cell division and elongation, leading to an increase in pore size on the cell wall surface. After entering the root system, CDs-MPs will pass through the Casparian strip and migrate in the vessels. Then, CDs-MPs enter the leaves through vascular bundles, and the distribution and size of epicuticular wax on leaves have changed. Furthermore, SBS showed resistant growth and increased levels of oxidative response when exposed to MPs/CDs-MPs. It is the first study to demonstrate the application of leaf-derived CDs in the prevention of MPs pollution by revealing the migration behavior of submicrometre plastics in SBS.


Assuntos
Carbono , Soja , Folhas de Planta , Pontos Quânticos , Folhas de Planta/química , Soja/química , Carbono/química , Pontos Quânticos/química , Microplásticos/toxicidade , Tamanho da Partícula , Raízes de Plantas , Plásticos/química , Fluorescência
14.
Part Fibre Toxicol ; 21(1): 19, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600504

RESUMO

BACKGROUND: Recently, carbon quantum dots (CQDs) have been widely used in various fields, especially in the diagnosis and therapy of neurological disorders, due to their excellent prospects. However, the associated inevitable exposure of CQDs to the environment and the public could have serious severe consequences limiting their safe application and sustainable development. RESULTS: In this study, we found that intranasal treatment of 5 mg/kg BW (20 µL/nose of 0.5 mg/mL) CQDs affected the distribution of multiple metabolites and associated pathways in the brain of mice through the airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) technique, which proved effective in discovery has proven to be significantly alerted and research into tissue-specific toxic biomarkers and molecular toxicity analysis. The neurotoxic biomarkers of CQDs identified by MSI analysis mainly contained aminos, lipids and lipid-like molecules which are involved in arginine and proline metabolism, biosynthesis of unsaturated fatty acids, and glutamine and glutamate metabolism, etc. as well as related metabolic enzymes. The levels or expressions of these metabolites and enzymes changed by CQDs in different brain regions would induce neuroinflammation, organelle damage, oxidative stress and multiple programmed cell deaths (PCDs), leading to neurodegeneration, such as Parkinson's disease-like symptoms. This study enlightened risk assessments and interventions of QD-type or carbon-based nanoparticles on the nervous system based on toxic biomarkers regarding region-specific profiling of altered metabolic signatures. CONCLUSION: These findings provide information to advance knowledge of neurotoxic effects of CQDs and guide their further safety evaluation.


Assuntos
Síndromes Neurotóxicas , Pontos Quânticos , Camundongos , Animais , Pontos Quânticos/toxicidade , Carbono/toxicidade , Carbono/química , Metabolômica/métodos , Encéfalo , Síndromes Neurotóxicas/etiologia , Biomarcadores
15.
J Hazard Mater ; 470: 134245, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603910

RESUMO

This study delved into the physiological and molecular mechanisms underlying the mitigation of cadmium (Cd) stress in the model medicinal plant Salvia miltiorrhiza through the application of ZnO quantum dots (ZnO QDs, 3.84 nm). A pot experiment was conducted, wherein S. miltiorrhiza was subjected to Cd stress for six weeks with foliar application of 100 mg/L ZnO QDs. Physiological analyses demonstrated that compared to Cd stress alone, ZnO QDs improved biomass, reduced Cd accumulation, increased the content of photosynthetic pigments (chlorophyll and carotenoids), and enhanced the levels of essential nutrient elements (Ca, Mn, and Cu) under Cd stress. Furthermore, ZnO QDs significantly lowered Cd-induced reactive oxygen species (ROS) content, including H2O2, O2-, and MDA, while enhancing the activity of antioxidant enzymes (SOD, POD, APX, and GSH-PX). Additionally, ZnO QDs promoted the biosynthesis of primary and secondary metabolites, such as total protein, soluble sugars, terpenoids, and phenols, thereby mitigating Cd stress in S. miltiorrhiza. At the molecular level, ZnO QDs were found to activate the expression of stress signal transduction-related genes, subsequently regulating the expression of downstream target genes associated with metal transport, cell wall synthesis, and secondary metabolite synthesis via transcription factors. This activation mechanism contributed to enhancing Cd tolerance in S. miltiorrhiza. In summary, these findings shed light on the mechanisms underlying the mitigation of Cd stress by ZnO QDs, offering a potential nanomaterial-based strategy for enhancing Cd tolerance in medicinal plants.


Assuntos
Cádmio , Pontos Quânticos , Espécies Reativas de Oxigênio , Salvia miltiorrhiza , Óxido de Zinco , Pontos Quânticos/química , Óxido de Zinco/química , Óxido de Zinco/toxicidade , Salvia miltiorrhiza/efeitos dos fármacos , Salvia miltiorrhiza/metabolismo , Cádmio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
16.
Food Chem ; 448: 139176, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574719

RESUMO

Using 3D printing technology, a gelatin-polyvinyl alcohol­carbon dots (GPC) layer+corn starch-polyvinyl alcohol-cinnamon essential oil (CPC) layer active bilayer film with an external barrier function and an internal controlled-release effect was successfully produced for food preservation. The GPC film was provided with potent antioxidant and UV blocking properties by the banana peel carbon dots (CDs). The cinnamon essential oil (CEO) had the strongest interaction with the film matrix at 3% (w/w), causing the CPC film having the lowest surface wettability, good integrity, and lowest crystallinity. The CEO's stability and releasing effectiveness were greatly enhanced by the creation of a bilayer film. At 60% filling rate of the CPC layer, the bilayer film showed the highest CEO retention after drying and the best CEO release performance. Finally, the created active bilayer film was found to significantly improve the sensory quality stability of the spicy essential oil microcapsule powders. It also successfully extended the mangoes' shelf life by delaying browning and rot.


Assuntos
Cinnamomum zeylanicum , Embalagem de Alimentos , Gelatina , Musa , Óleos Voláteis , Impressão Tridimensional , Amido , Óleos Voláteis/química , Embalagem de Alimentos/instrumentação , Cinnamomum zeylanicum/química , Gelatina/química , Amido/química , Musa/química , Carbono/química , Conservação de Alimentos/instrumentação , Conservação de Alimentos/métodos , Pontos Quânticos/química , Zea mays/química
17.
J Hazard Mater ; 470: 134218, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581878

RESUMO

The development of high-performance sensors for doxycycline (DOX) detection is necessary because its residue accumulation will cause serious harm to human health and the environment. Here, a novel tri-emission ratiometric fluorescence sensor was proposed by using "post-mixing" strategy of different emissions fluorescence molecularly imprinted polymers with salicylamide as dummy template (DMIPs). BSA was chosen as assistant functional monomer, and also acted as sensitizers for the aggregation-induced emission (AIE) effect of DOX. The blue-emitting carbon dots and the red-emitting CdTe quantum dots were separately introduced into DMIPs as the response signals. Upon DOX recognition within 2 min, blue and red fluorescence of the tri-emission DMIPs sensor were quenched while green fluorescence of DOX was enhanced, resulting in a wide range of color variations observed over bluish violet-rosered-light pink-orange-yellow-green with a detection limit of 0.061 µM. The sensor possessed highly selective recognition and was successfully applied to detect DOX in complicated real samples. Moreover, with the fluorescent color collection and data processing, the smartphone-assisted visual detection of the sensors showed satisfied sensitivity with low detection limit. This work provides great potential applications for rapid and visual detection of antibiotics in complex substrates.


Assuntos
Antibacterianos , Compostos de Cádmio , Doxiciclina , Impressão Molecular , Pontos Quânticos , Espectrometria de Fluorescência , Telúrio , Doxiciclina/análise , Doxiciclina/química , Pontos Quânticos/química , Telúrio/química , Antibacterianos/análise , Compostos de Cádmio/química , Limite de Detecção , Fluorescência , Carbono/química , Corantes Fluorescentes/química , Polímeros Molecularmente Impressos/química , Smartphone
18.
Nanoscale ; 16(16): 8074-8089, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38563405

RESUMO

Amyloid aggregation is implicated in the pathogenesis of various neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). It is critical to develop high-performance drugs to combat amyloid-related diseases. Most identified nanomaterials exhibit limited biocompatibility and therapeutic efficacy. In this work, we used a solvent-free carbonization process to prepare new photo-responsive carbon nanodots (CNDs). The surface of the CNDs is densely packed with chemical groups. CNDs with large, conjugated domains can interact with proteins through π-π stacking and hydrophobic interactions. Furthermore, CNDs possess the ability to generate singlet oxygen species (1O2) and can be used to oxidize amyloid. The hydrophobic interaction and photo-oxidation can both influence amyloid aggregation and disaggregation. Thioflavin T (ThT) fluorescence analysis and circular dichroism (CD) spectroscopy indicate that CNDs can block the transition of amyloid from an α-helix structure to a ß-sheet structure. CNDs demonstrate efficacy in alleviating cytotoxicity induced by Aß42 and exhibit promising blood-brain barrier (BBB) permeability. CNDs have small size, low biotoxicity, good fluorescence and photocatalytic properties, and provide new ideas for the diagnosis and treatment of amyloid-related diseases.


Assuntos
Peptídeos beta-Amiloides , Carbono , Carbono/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Humanos , Catálise , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Barreira Hematoencefálica/metabolismo , Animais , Agregados Proteicos/efeitos dos fármacos , Pontos Quânticos/química , Amiloide/química , Amiloide/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Interações Hidrofóbicas e Hidrofílicas
19.
Anal Chim Acta ; 1303: 342491, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609258

RESUMO

Acinetobacter baumannii (A. baumannii) is a pathogenic bacterium that causes severe infections and its rapid and reliable diagnosis is essential for effective control and treatment. In this study, we present an electrochemical aptasensor based on a signal amplification strategy for the detection of A. baumannii, the high specificity and affinity of the aptamer for the target make it favorable for signal amplification. This allows for a highly sensitive and selective detection of the target. The aptasensor is based on a carbon screen-printed electrode (CSPE) that has been modified with a nanocomposite consisting of multi-walled carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), chitosan (CS), and a synthesized carbon quantum dot (CQD) from CS. Additionally, the self-assembled aptamers were immobilized on hemin-graphite oxide (H-GO) as a signal probe. The composition of the nanocomposite (rGO-MWCNT/CS/CQD) provides high conductivity and stability, facilitating the efficient capture of A. baumannii onto the surface of the aptasensor. Also, aptamer immobilized on Hemin-graphite oxide (H-GO/Aptamer) was utilized as an electrochemical signal reporter probe by H reduction. This approach improved the detection sensitivity and the aptamer surface density for detecting A. baumannii. Furthermore, under optimized experimental conditions, the aptasensor was demonstrated to be capable of detecting A. baumannii with a linear range of (10 - 1 × 107 Colony-forming unit (CFU)/mL) and a limit of detection (LOD) of 1 CFU/mL (σ = 3). One of the key features of this aptasensor is its ability to distinguish between live and dead bacteria cells, which is very important and critical for clinical applications. In addition, we have successfully detected A. baumannii bacteria in healthy human serum and skim milk powder samples provided using the prepared electrochemical aptasensor. The functional groups present in the synthetic CQD, rGO-MWCNT, and chitosan facilitate biomolecule immobilization and enhance stability and activity. The fast electron-transfer kinetics and high conductivity of these materials contribute to improved sensitivity and selectivity. Furthermore, The H-GO/Aptamer composite's large surface area increases the number of immobilized secondary aptamers and enables a more stable structure. This large surface area also facilitates more H loading, leading to signal amplification.


Assuntos
Acinetobacter baumannii , Quitosana , Grafite , Nanotubos de Carbono , Pontos Quânticos , Humanos , Hemina , Bactérias , Eletrodos
20.
Int J Nanomedicine ; 19: 3611-3622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660022

RESUMO

Background: Mangiferin (MA), a bioactive C-glucosyl xanthone with a wide range of interesting therapeutic properties, has recently attracted considerable attention. However, its application in biomedicine is limited by poor solubility and bioavailability. Carbon dots (CDs), novel nanomaterials, have immense promise as carriers for improving the biopharmaceutical properties of active components because of their outstanding characteristics. Methods: In this study, a novel water-soluble carbon dot (MC-CDs) was prepared for the first time from an aqueous extract of Moutan Cortex Carbonisata, and characterized by various spectroscopies, zeta potential and high-resolution transmission electron microscopy (HRTEM). The toxicity effect was investigated using the CCK-8 assay in vitro. In addition, the potential of MC-CDs as carriers for improving the pharmacokinetic parameters was evaluated in vivo. Results: The results indicated that MC-CDs with a uniform spherical particle size of 1-5 nm were successfully prepared, which significantly increased the solubility of MA in water. The MC-CDs exhibited low toxicity in HT-22 cells. Most importantly, the MC-CDs effectively affected the pharmacokinetic parameters of MA in normal rats. UPLC-MS analysis indicated that the area under the maximum blood concentration of MA from mangiferin-MC-CDs (MA-MC-CDs) was 1.6-fold higher than that from the MA suspension liquid (MA control) after oral administration at a dose of 20 mg/kg. Conclusion: Moutan Cortex-derived novel CDs exhibited superior performance in improving the solubility and bioavailability of MA. This study not only opens new possibilities for the future clinical application of MA but also provides evidence for the development of green biological carbon dots as a drug delivery system to improve the biopharmaceutical properties of insoluble drugs.


Assuntos
Disponibilidade Biológica , Carbono , Paeonia , Tamanho da Partícula , Ratos Sprague-Dawley , Solubilidade , Xantonas , Xantonas/farmacocinética , Xantonas/química , Xantonas/administração & dosagem , Animais , Carbono/química , Carbono/farmacocinética , Masculino , Ratos , Paeonia/química , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/administração & dosagem , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...